US009483591B1

United States Patent

(12) (10) Patent No.: US 9,483,591 B1
Arbel et al. 45) Date of Patent: Nov. 1, 2016
(54) ASSURING CHIP RELIABILITY WITH 20149/6022510’3(1)491 izl ‘9‘%8 LS‘ E/asude;lan et al.
u et al.
AUTOMATIC GENERATION OF DRIVERS 2015/0082263 Al 3/2015 Vasudevan et al.
AND ASSERTIONS
(71) Applicant: INTERNATIONAL BUSINESS OTHER PUBLICATIONS
MACHINES CORPORATION, Arbel, et al., “Automated Detection and Verification of Parity-
Armonk, NY (US) Protected memory Elements,” IEEE 2014:978-1-4799-6278; (8
pages).
(72) Inventors: Eli Arbel, Nesher (IL); Erez Barak, Chatterjee, et al., “Utilizing Assertion Synthesis to Achieve an
Hod Hasharon (IL); Bodo Hoppe, Automated Assertion-Based Verification Methodology fo Complex
Stuttgart (DE); Udo Krautz, Fsslingen Graphics Chip Designs,” Design Automation Conference; Jun.
P . - 13-18, 2010; 2 pages.
(DE); Shiri Moran, Kiryat Tivon (IL) Frehse, et al., “Complete and Effective Robustness Checking by
. Means of Interpolation,” IEEE 2012: Proceedings of the 12th
(73) Assignee: INTERNATIONAL BUSINESS Conference on Formal Methods in Computer-Aided Design; pp.
MACHINES CORPORATION, 82-90 (9 pages).
Armonk, NY (US) Hekmatpour, Amir et al., “Block-Based Schema-Driven Assertion
Generation for Functional Verification,” IEEE 2005, ATS 05,
(*) Notice: Subject to any disclaimer, the term of this 281;7735/(15;“6]51331%65{_ c ¢ Error Detection Losic f
. - autz, et al., “Evaluating Coverage of Error Detection Logic for
patent 1s exltjeng ed Odr adjusted under 35 Soft Errors Using Formal Methods,” University of Kaiserslautern:
U.S.C. 154(b) by 0 days. Sep. 11, 2005; (6 pages).
Leveugle, R et al., “Statistical Fault Injection:Quantified Error and
(21) Appl. No.: 14/953,094 Confidence,” EDAA 2009: TIMA Laboratory; 978-3-9810801-5-5;
(5 pages).
(22) Filed: Nov. 27, 2015 Liu, Lingyi et al, “Automatic Generation of Assertions from
System Level Design using Data Mining,” IEEE 2011:978-1-4577-
(51) Int.ClL 0118-411; pp. 191-200; (10 pages).
GOGF 9/455 (2006.01) (Continued)
GO6F 17/50 (2006.01)
(52) US. CL Primary Examiner — Eric Lee
CPC GOG6F 17/5022 (2013.01); GOGF 17/505 (74) Attorney, Agent, or Firm — Cantor Colburn LLP;
(2013.01) David Quinn
(58) Field of Classification Search
USPC oo 716106 G7) ABSTRACT
See application file for complete search history. A computer-implemented method may include retrieving a
design netlist with a processor, identifying, via the proces-
(56) References Cited sor, a logic structure in the design netlist, generating, via the
processor, a driver based on the logic structure, applying, via
U.S. PATENT DOCUMENTS the processor, a simulation and a formal model based on the
7900,181 B2 3/2011 Hekmatpour f al driver, and testing, via the processor, an output of the

8,234,102 B2
8,589,841 B2 *

7/2012 Lange

11/2013 Arbel et al. GO6F 17/504

714/42

G

Retrieve design netlist

302

\l

304

30{|

308

Identify logic structure l

Generate assertions, drivers, and
simulation / formal model

Apply simulation / formal model |

Test Assertions:
Assertions
Failed?

|.7

simulation and the formal model.

20 Claims, 9 Drawing Sheets

300

Ve

316

Generate new
netlist

314

US 9,483,591 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Macieira, Rafael M., et al., “Device Driver Generation and Check-
ing Approach,” Brazilian Symposium on Computing System Engi-
neering: 2011 IEEE, 978-0-7695-4641-4/11; pp. 72-77, (6 pages).
Maniatakos, Michail, et al., “Workload-Driven Selective Hardening
of Control State Elements in Modern Microprocessors,” IEEE VLSI
Test Symposium; 28:2010; pp. 159-164 (6 pages).

Ramachandran, Pradeep, et al., “Statistical Fault Injection,” IBM
Systems and Technology Group: DSN 2008; (6 pages).

Seshia, et al., “Verification-Guided Soft Error Resilience,” Electri-
cal Engineering and Computer Sciences University of California at
Berkely: Sep. 26, 2006; (14 pages).

Vasudevan, Shobha et al, “Goldmine: Automatic Assertion Genera-
tion Using Data Mining and Static Analysis,” EDAA 2010: 978-3-
9810801-6-2; 4 pages.

* cited by examiner

US 9,483,591 B1

Sheet 1 of 9

Nov. 1, 2016

U.S. Patent

Ul
SN WIASAS

SIL
YIOMIDN

I'Ol4
LI1 el 011 601
Aepdsiq Ieadg 3SNOA pieoghay]
gi1-mpn
BuIs$3001d 911 - 1ydepy 211 - depy
songdern Kerdsicy aoBJI2ju]
|
|
5 901
mmwmﬂwoﬂwmﬂwwm@ SEM%M\ o/ L0 801 SO Ad) UL
S WvY WOY qI01 D&UI_I
2101 NdO
111 waskg 101 105§3001d
sunerndQp
ZOT ATOWd

001

US 9,483,591 B1

Sheet 2 of 9

Nov. 1, 2016

U.S. Patent

(A k|
01 207
\\ \\
10jeI0Us0) ajnpow
siaAlL(LOIBIYLIOA

puUB SUONIesSY

01607 pue 81er)

Jojeoyddy 3INPO —
sJoAl(pue uojeisusy)
SUOJIOSSY Joday nduy ubtseq
v/ 02 70z
90¢

auibug sI9ALIQ pUB SUOIUSSSY

Aloway

\

00¢

[40))

US 9,483,591 B1

Sheet 3 of 9

Nov. 1, 2016

U.S. Patent

A

\A_ Siied X1

453

A 4

isijisu
Mau B)elausy)

91¢

SaA

€ "OId

doig

&Pojed
SUOILIBSSY
'SUOQILISSSY 1S9 |

(453

[2poLL [euloy) / uonenuis Addy

i

80¢

[opouws [uLIO} / uoenuIS
PUE ‘SIDALID ‘SUOILIOSSE S]RISUDY)

"
90¢

-

ainonns o18oj Ajuap]

N

y

¥0€

00¢

A 4

1s11eu ubisap aaaley

A
¢

US 9,483,591 B1

Sheet 4 of 9

Nov. 1, 2016

U.S. Patent

v "OI1d

Buneb pue ‘saunioniis paroslosd Apuapl o) uonewoul Buned 10elixg

A

ﬁ

90v

uonewuojul 3160j

Bunpoays 10BI1Xg

y

A

12917

1sj1ou sy ezAjeue Ajleonsiels

oov \v

[40)7

US 9,483,591 B1

Sheet 5 of 9

Nov. 1, 2016

U.S. Patent

g

NJK|

pifeA si Aied syl 1ey; BulelS UOILIOSSE UB 9]BISUDY)

4

3

80§

Buneb pue sainioniis pajoaioid Aled Ajusp)

4

3

90s

SINGINO WO4) M. ISIj1oU 85I8AB |

A

h

v0S

Aed

IVUETY

00s

20s

US 9,483,591 B1

Sheet 6 of 9

Nov. 1, 2016

U.S. Patent

LT

iy o3

gt anogbrese o) BIep Y induy asnys uIiwy v
gy o snogBreu oy eiep ST anduT esoum yoiwy 8 Lo anding oyy st b d unogBrey oy wiep

009

sut snugbrau oy wiepiusan usb Aitied

9 'Ol4

, pep 67Ky o utr d anogbrey o) wiep
e ey oib anpgbrsy 01 pIRp => iy o3 glanogfIsy ol eiep
_— g anoubisy oy Biep

o ¥:1 d anogfiteay 01 viep

7
Sy ey #) J4o3ses oylern B3y oane anoafitey o1 siep

.

US 9,483,591 B1

Sheet 7 of 9

Nov. 1, 2016

U.S. Patent

LD

{{prepiuass uab Aitaed = d eiep) sAemie 142%s5m

Aﬁmﬁwmw RIEpIUBAD “usb AxTaed
a0 {{p18s eiepluand uab AyrJed

mﬁawmmﬁmwmu
48 {195 plrEp

H{g 83 §) J033EH

00L

Mwww 1esipue “aieh

“{s)b 1as)pue aieb = d erep

Mww@ 1asjpue mwmm

“{g)b 18s)pue s1ph = {4 o3 gieiep
farhen pas o anoe o d eyep
Tarhoin pis o 3ne o BlEp

US 9,483,591 B1

Sheet 8 of 9

Nov. 1, 2016

U.S. Patent

8 "OId

{b d 2aa g {77 o3 4)b D2aalppo AlTJded ST pue pTIEA => UT 145 yyod
sayn1el 4o sindino ade b d o9a pge b sea - -

S

008

US 9,483,591 B1

Sheet 9 of 9

Nov. 1, 2016

U.S. Patent

‘Bran b d daa @sie
BT b saa sz {

6 “OI1d

i3

RPTLEA)
RILEA}

yaym 1Tq wopued =»> b d 33A
gEyM 170 wopued =» b 09A

12pO3 3UL 01 DOpRE 4P SsUT) BUTMOIIOL BUL pue --
ip

‘BTae b d ssa pue BTuo b 2384 03 paleuss 8

sindyng ssyslel By ~-

pebueyaun -- b d 20a § {17 81 4)b oaaippe AiTied ST puw pTieA => UT JJ4@ sysd

!

S

006

US 9,483,591 B1

1
ASSURING CHIP RELIABILITY WITH
AUTOMATIC GENERATION OF DRIVERS
AND ASSERTIONS

BACKGROUND

The present disclosure relates to assuring chip reliability,
and more specifically, to assuring chip reliability with gen-
eration of chip reliability drivers and assertions based on
chip structure identification.

With the shrinking sizes of hardware devices, design
susceptibility to soft errors became a significant concern in
electrical designs. Most modern designs, from application-
specific integrated circuits (ASICs) to microprocessors, con-
tain some degree of Error Detection and/or Correction
(EDC) capabilities, often implemented as supplementary
logic. In some cases, a design may adhere to very strict
reliability requirements and may be designed with an exten-
sive amount of EDC in it such that almost all functional
latches may be protected against soft (or hard) errors using
hardware error checkers. Different methodologies and tech-
niques are used in order to verify that a given design meets
its reliability requirements.

One of these methods is code review, which occurs during
the logic implementation phase. The goal of the review
process is to make sure that latches in the design are
protected according to a corresponding specification. For
example, if a specification indicates that a command bus is
to be protected by parity checking, the design reviewer will
have to make sure that is what was actually implemented in
the hardware description (for example, the VHSIC Hard-
ware Description Language (VHDL files)). Since the veri-
fication process involves going thru many lines of code
across various files, the process can be time-consuming,
expensive, and error prone.

Some current methods for chip verification may apply
simulation techniques designed to find invariance in the
design and to assist functional verification of the design.
Further techniques may include fault injection techniques to
ensure reliability. Current methods may be general and not
configured to improve chip reliability. Furthermore, they
may not take advantage of predefined reliability protection
structures that exist on modern processing chips. For
example, some conventional approaches may include gen-
erating assertions for general verification of a chip based on
certain specifications provided by the user. This approach
often focuses on ranking the generated assertions. These
methods may consider reliability verification and may not
check the general correctness of a design.

Simulation traces, data mining, and formal verification are
also commonly used to automatically identify general asser-
tions that may be invariants of the design. Again, these
conventional methods may not consider the reliability of the
chip based on prior knowledge about reliability structures,
may not seek for general invariants, and do not use simu-
lation traces or data mining to generate the assertions.

SUMMARY

According to some embodiments, a computer-imple-
mented method for assuring a reliability of a chip is
described. The computer-implemented method may include
retrieving a design netlist with a processor, identifying, via
the processor, a logic structure in the design netlist, gener-
ating, via the processor, a driver based on the logic structure,
applying, via the processor, a simulation and a formal model

10

15

20

25

30

35

40

45

50

55

60

65

2

based on the driver, and testing, via the processor, an output
of the simulation and the formal model.

According to other embodiments, a system for assuring a
reliability of a chip is described. The system may include a
processor configured to retrieve a design netlist, identify a
logic structure in the design netlist, generate a driver based
on the logic structure, apply a simulation and a formal model
based on the driver, and test an output of the simulation and
the formal model.

According to yet other embodiments, a non-transitory
computer-readable storage medium is described. The non-
transitory computer-readable storage medium may be con-
figured to store instructions that, when executed by a com-
puter, cause the computer to perform a method for assuring
a reliability of a chip. The method may include retrieving a
design netlist with a processor, identifying, via the proces-
sor, a logic structure in the design netlist, generating, via the
processor, a driver based on the logic structure, applying, via
the processor, a simulation and a formal model based on the
driver, and testing, via the processor, an output of the
simulation and the formal model.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 illustrates a block diagram of a computer system
for use in practicing the teachings herein;

FIG. 2 depicts an exemplary computer memory having an
assertions and drivers engine in accordance with an exem-
plary embodiment;

FIG. 3 depicts a flow diagram of a computer-implemented
method for assuring chip reliability in accordance with an
exemplary embodiment;

FIG. 4 depicts a flow diagram of a computer-implemented
method for identifying logic structure in accordance with an
exemplary embodiment;

FIG. 5 depicts a flow diagram of a computer-implemented
method for generating assertions, drivers, simulations, and
formal models in accordance with an exemplary embodi-
ment;

FIG. 6 depicts an example of VHDL logic code in
accordance with an exemplary embodiment;

FIG. 7 depicts an example of VHDL logic code, in
accordance with an exemplary embodiments;

FIG. 8 depicts an example of VHDL logic code in
accordance with some exemplary embodiments; and

FIG. 9 depicts an example of VHDL code, in accordance
with some exemplary embodiments.

DETAILED DESCRIPTION

FIG. 1 illustrates a block diagram of a computer system
100 (hereafter “computer 100”) for use in practicing the
embodiments described herein. The methods described
herein can be implemented in hardware, software (e.g.,
firmware), or a combination thereof. In an exemplary
embodiment, the methods described herein are implemented
in hardware, and may be part of the microprocessor of a
special or general-purpose digital computer, such as a per-
sonal computer, workstation, minicomputer, or mainframe
computer. Computer 100 therefore can embody a general-
purpose computer. In another exemplary embodiment, the

US 9,483,591 B1

3

methods described herein are implemented as part of a
mobile device, such as, for example, a mobile phone, a
personal data assistant (PDA), a tablet computer, etc.

In an exemplary embodiment, in terms of hardware archi-
tecture, as shown in FIG. 1, computer 100 includes proces-
sor 101. Computer 100 also includes memory 102 coupled
to processor 101, and one or more input and/or output (I/O)
adaptors 103, that may be communicatively coupled via a
local system bus 105. Memory 102 may be operatively
coupled to one or more internal or external memory devices.
Communications adaptor 104 may be operatively connect
computer 100 to one or more networks 115. System bus 105
may also connect one or more user interfaces via interface
adaptor 112. Interface adaptor 112 may connect a plurality
of user interfaces to computer 100 including, for example,
keyboard 109, mouse 110, speaker 113, etc. System bus 105
may also connect display adaptor 116 and display 117 to
processor 101. Processor 101 may also be operatively con-
nected to graphical processing unit 118.

Processor 101 is a hardware device for executing hard-
ware instructions or software, particularly that stored in a
non-transitory computer-readable memory (e.g., memory
102). Processor 101 can be any custom made or commer-
cially available processor, a central processing unit (CPU),
a plurality of CPUs, for example, CPU 101a-101¢, an
auxiliary processor among several other processors associ-
ated with the computer 100, a semiconductor based micro-
processor (in the form of a microchip or chip set), or
generally any device for executing computer-readable
instructions. Processor 101 can include a memory cache
106, which may include, but is not limited to, an instruction
cache to speed up executable instruction fetch, a data cache
to speed up data fetch and store, and a translation lookaside
buffer (TLB) used to speed up virtual-to-physical address
translation for both executable instructions and data. The
cache 106 may be organized as a hierarchy of more cache
levels (L1, L2, etc.).

Memory 102 can include random access memory (RAM)
107 and read only memory (ROM) 108. RAM 107 can be
any one or combination of volatile memory elements (e.g.,
DRAM, SRAM, SDRAM, etc.). ROM 108 can include any
one or more nonvolatile memory elements (e.g., erasable
programmable read only memory (EPROM), flash memory,
electronically erasable programmable read only memory
(EEPROM), programmable read only memory (PROM),
tape, compact disc read only memory (CD-ROM), disk,
cartridge, cassette or the like, etc.). Moreover, memory 102
may incorporate electronic, magnetic, optical, and/or other
types of non-transitory computer-readable storage media.
Note that the memory 102 can have a distributed architec-
ture, where various components are situated remote from
one another, but can be accessed by the processor 101.

The instructions in memory 102 may include one or more
separate programs, each of which comprises an ordered
listing of computer-executable instructions for implement-
ing logical functions. In the example of FIG. 1, the instruc-
tions in memory 102 may include a suitable operating
system 111. Operating system 111 can control the execution
of other computer programs and provides scheduling, input-
output control, file and data management, memory manage-
ment, and communication control and related services.

Input/output adaptor 103 can be, for example, one or more
buses or other wired or wireless connections as is known in
the art. The input/output adaptor 103 may have additional
elements, which are omitted for simplicity, such as control-
lers, buffers (caches), drivers, repeaters, and receivers, to
enable communications. Further, the local interface may

10

15

20

25

30

35

40

45

50

55

60

65

4

include address, control, and/or data connections to enable
appropriate communications among the aforementioned
components.

Interface adaptor 112 may be configured to operatively
connect one or more [/O devices to computer 100. For
example, interface adaptor 112 may connect a conventional
keyboard 109 and mouse 110. Other output devices, e.g.,
speaker 113 may be operatively connected to interface
adaptor 112. Other output devices may also be included,
although not shown. For example, devices may include but
are not limited to a printer, a scanner, microphone, and/or the
like. Finally, the I/O devices connectable to interface adaptor
112 may further include devices that communicate both
inputs and outputs, for instance but not limited to, a network
interface card (NIC) or modulator/demodulator (for access-
ing other files, devices, systems, or a network), a radio
frequency (RF) or other transceiver, a telephonic interface,
a bridge, a router, and the like.

Computer 100 can further include display adaptor 116
coupled to one or more displays 117. In an exemplary
embodiment, computer 100 can further include communi-
cations adaptor 104 for coupling to a network 115.

Network 115 can be an IP-based network for communi-
cation between computer 100 and any external device.
Network 115 transmits and receives data between computer
100 and devices and/or systems external to computer 100. In
an exemplary embodiment, network 115 can be a managed
IP network administered by a service provider. Network 115
may be a network internal to an aircraft, such as, for
example, an avionics network, etc. Network 115 may be
implemented in a wireless fashion, e.g., using wireless
protocols and technologies, such as WiFi, WiMax, etc.
Network 115 may also be a wired network, e.g., an Ethernet
network, an ARINC 429 network, a CAN, etc., having any
wired connectivity including, e.g., an RS232 connection,
R5422 connection, etc. Network 115 can also be a packet-
switched network such as a local area network, wide area
network, metropolitan area network, Internet network, or
other similar type of network environment. The network 115
may be a fixed wireless network, a wireless local area
network (LAN), a wireless wide area network (WAN) a
personal area network (PAN), a virtual private network
(VPN), intranet or other suitable network system.

If computer 100 is a PC, workstation, laptop, tablet
computer and/or the like, the instructions in the memory 102
may further include a basic input output system (BIOS)
(omitted for simplicity). The BIOS is a set of essential
routines that initialize and test hardware at startup, start
operating system 111, and support the transfer of data among
the operatively connected hardware devices. The BIOS is
stored in ROM 108 so that the BIOS can be executed when
computer 100 is activated. When computer 100 is in opera-
tion, processor 101 may be configured to execute instruc-
tions stored within the memory 102, to communicate data to
and from the memory 102, and to generally control opera-
tions of the computer 100 pursuant to the instructions.

In electronic design, a netlist is a description of the
connectivity of an electronic circuit. In some instances, a
single netlist may effectively be a collection of several
related lists. In their simplest form, a netlist may consist of
a list of the terminals (pens) of electronic components in the
circuit, and a list of the electrical conductors that intercon-
nect the terminals.

Referring now to FIG. 2, computer memory 102 is
depicted having an assertions and drivers engine 200 (here-
after “engine 2007), in accordance with an exemplary
embodiment. Assertions and drivers engine 200 may include

US 9,483,591 B1

5

a design input module 202, a report generation module 204,
an assertions and drivers applicator 206, a gate and logic
verification module 208, and in assertions and drivers gen-
erator 210.

Assertions and drivers engine 200 may be configured with
a plurality of design modules and/or engines for performing
portions of methods described herein. For example, design
input module 202 may be configured to prompt for user
input and retrieve user input. In some aspects design module
202 may be configured to retrieve a netlist from one or more
local and or remotely located storage media. Report gen-
eration module 204 can be configured to generate one or
more human readable reports configured to relay informa-
tion in connection with a simulation result, a chip testing
result, and/or other operations described herein. Report
generation module 204 can be configured to output test
information including statistical analysis of a design netlist,
checking information, gating information from the design
netlist, etc. Assertions and drivers applicator 206 may be
configured to verify parity generation, traverse one or more
net lists, perform one or more tests of an output of a
simulation, and/or perform other aspects of embodiments
described herein. Gate and logic verification module 208
may be configured to verify the validity of a parity opera-
tion. Assertions and drivers generator 210 may be config-
ured to verify that the gating is correct, and generate drivers.
Report generation module 204 may be configured to one or
more design next lists retrieve a design netlist, for example.

Referring now to FIG. 3, a flow diagram of a computer-
implemented method 300 for assuring chip reliability is
depicted, in accordance with an exemplary embodiment.
After an initial start step, as shown in block 301, engine 200
may retrieve a circuit design netlist, as shown in block 302.
In some aspects, engine 200 may obtain the circuit design in
a source code form, such as VHDL code, or in a binary form,
such as in a netlist. In some exemplary embodiments, the
circuit design may be obtained in a human-readable or a
non-human readable format.

As shown in block 304, engine 200 may identify a logic
structure from the netlist. At block 306, engine 200 may
generate the assertions, the drivers, a simulation, and a
formal model. As shown at block 308, assertions and drivers
applicator 206 may apply the simulation and formal model.
In some aspects, engine 200 may test the assertions to
determine whether the assertion conditions are met, as
shown at block 310. If the assertions failed, as shown in
block 314, engine 200 may notate, flag, and/or otherwise
identify failing conditions, (whereby a designer may be
alerted to fix the failing conditions) and generate a new
netlist, as shown at block 316. If the assertions did not fail,
the process may stop, as shown at block 312.

Now considering the flow in greater detail, FIG. 4 depicts
a computer-implemented method for identifying the logic
structure (block 304), according to some exemplary embodi-
ments. Referring now to FIG. 4, as shown in block 402,
engine 200 may statistically analyze a netlist. According to
some embodiments, based on the protection logic of the
netlist, engine 200 may take a few sequential elements (for
example, 8 bits) and perform a parity calculation to ensure
that no elements (bits) have slipped. The dropped bits are
referred to as a bit slip. Bit slippage may also be caused
randomly by any number of electromagnetic disturbances,
hardware malfunction, and/or other causes.

In some exemplary embodiments, as shown in block 402,
gate and logic verification module 208 may perform a
topological analysis of the circuit design with respect to the
parity support signals to determine whether a bit slip has

5

10

15

20

25

30

35

40

45

50

55

60

65

6

occurred. Additionally or alternatively, gate and logic veri-
fication module 208 may look for common parity protection
structures in the circuit design netlist.

As shown at block 404, gate and logic verification module
208 may extract checking logic information from the design
netlist. When there is a parity calculation connected to the
checker, as shown at block 406, engine 200 may traverse the
netlist and identify a structure of latches that may be
protected by the parity check. If the parity generation is also
in the netlist, then the identification may be based on both
the parity check and the parity generation. According to
other embodiments, other possible protection mechanisms
are contemplated.

In some situations, the chip may be very large and may be
divided into subunits. Accordingly, the party generation and
parity check may be performed in different subunits. In such
cases, the calculations for the most part may be performed
on a single subunit. Accordingly, there may be cases where
the parity generation corresponding to the parity check may
be in another subunit and not in a given netlist. In these cases
it may be more difficult to identify the protective structure
and to specifically exclude any feeding conditions.

Referring again to FIG. 3, as shown in block 306, asser-
tions and drivers generator 210 may generate assertions,
drivers, and a simulation/formal model. According to some
embodiments, an assertion is a code verification that may be
used to detect erroneous conditions in the software and/or
hardware performance. Assertions are generally used for
chip design checking. For example, in some aspects asser-
tions may catch programming errors. Assertions may
express information about the functional behavior and/or
nature of a block as the chip designer intended for it to be
used. In other aspects, assertions may also be used as
internal test points that wait for particular predefined con-
ditions to occur. For example, assertions may be configured
to notify a designer about the conditions causing an occur-
rence of an error. Assertions may also provide a plurality of
design checkpoints that continuously evaluate chip perfor-
mance in the form of an expression. When an expression
does not hold true, an assertion flag may be raised by
assertions and drivers applicator 206. More particularly, the
driver for validating may validate gating conditions via the
output of the latches of the parity check in cycles where the
check has been gated. A verification engineer may go
directly to the problem identified in the assertion instead of
tediously backtracking waveforms or analyzing a megabit
large log file. In some aspects assertions may be included
directly within hardware descriptive language (HDL) code
that compares the RTL description of the design. They may
also be applied from the outside in the form of a test bench
or collection of test vectors to check the designs response to
input.

FIG. 5 depicts a flow diagram of a computer-implemented
method for generating assertions, drivers, simulations and
formal models, in accordance with an exemplary embodi-
ment. As previously discussed, when the chip is very large
it may be divided into subunits. Sometimes a parity genera-
tion driver and parity check driver may reside in different
subunits. Accordingly, as shown in block 502, gate and logic
verification module 208 may verify the parity signal at the
unit level (and not in the chip level).

In some aspects, it may be necessary to verify that the
parity signal generated and sent to a neighboring unit is
valid, and that engine 200 performs the appropriate check.
To that end, as shown in block 504, engine 200 may verify
that there is a match between the generated parity and the
checked parity in the sending unit. Accordingly, engine 200

US 9,483,591 B1

7

may determine whether there is a match between the gen-
erated parity and the checked parity. Accordingly, engine
200 may traverse the netlist back from the outputs to identify
the parity and the protected structures, and as shown in block
506, identify the gating in the two different sub-units away
from the parity to the outputs.

As shown in block 508, assertions and drivers generator
210 may generate an assertion stating that the parity is valid.
FIG. 6 depicts VHDL code, in accordance with some
embodiments.

Referring briefly to FIG. 6, a vhdl code 600 is depicted.
Engine 200 may reveal that the output signal (data_to_neig-
bour) should be the parity of the output bus (data_to_neig-
bour(0 to 4)) after traversing the netlists back from the
outputs while applying the parity identification and pro-
tected structures identification. In this example, if there are
no gates detected while traversing, and the assertions hold at
every cycle, engine 200 may extract the small relevant part
of the model and use the part for a formal to prove that the
above assertion holds true. Accordingly, engine 200 may
verify, with assertions and drivers applicator 206, that the
corresponding inputs are checked and verified as correct, or
verified as not correct. Accordingly, engine 200 may deter-
mine a correctness status of the corresponding inputs.

By way of another example, referring briefly to FIG. 7,
example of an original VHDL code 700 is depicted accord-
ing to some embodiments. Engine 200 may traverse the
netlist to reveal that data_p should be the parity of data.
However, the invariant may not hold true if sel_q(0) and
sel_q(1) are not mutually exclusive. The two signals shown
here could be mutually exclusive since, for example, one of
the signals is the negation of the other. But they may also be
mutually exclusive only in the wider context of the sub-unit
under legal input vectors. Accordingly, engine 200 may
determine a correctness status of the two different sub-units
by extracting a small part of the model to prove the gener-
ated invariant with a formal. If the formal fails to prove the
invariant, engine 200 may use a simulation, and then verify
that the receiving unit has used the appropriate checking
algorithm.

Referring once again to FIG. 5, after identifying the parity
protected structures and gating as shown at block 506,
engine 200 may generate an assertion stating that the parity
is valid (as shown at block 508). Engine 200 may either use
the assertion with respect to the simulation, or use the
assertion with respect to a formal on the extractive model.

After generating assertions, assertions and drivers engine
200 may automatically generate drivers for a simulation. In
some aspects, engine 200 may automatically create a driver
to verify that the gating on the way to the checker is correct.
Particularly, engine 200 may generate a driver to verify that
the netlist is not over gating or otherwise gating improperly.
If the netlist is over gating, than an unreported error may
propagate and cause silent data corruption. If the netlist is
not gating properly, then a redundant recovery process
(which may be expensive in resources) may occur. FIG. 8
depicts an example of an original VHDL code 800, in
accordance with some exemplary embodiments.

Referring now to FIG. 8, in the first stage of applying the
automatic detection of parity calculation and gating engine
200 may determine that the expression not(m3_valid) indi-
cate gates to the parity check, and that the signals vec_p_q,
vec_q are the arguments of the parity check. Engine 200 may
next synthesize a driver in which copies of the two latches
are generated, with the difference being that the output
signal is renamed. Accordingly, engine 200 may override the
original output of each latch such that it may be randomized
when the check is gated and has assumed the original value.

10

20

30

40

45

8

FIG. 9 depicts the new, overridden version of the second
latch.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object

US 9,483,591 B1

9

oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the

30

40

45

50

55

60

10

blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

What is claimed is:

1. A computer-implemented method for assuring a reli-
ability of a chip comprising:

retrieving a design netlist with a processor;

identifying, via the processor, a logic structure in the

design netlist;
generating, via the processor, a driver based on the logic
structure, wherein generating the driver based on the logic
structure comprises:

verifying a parity;

traversing a netlist back from a plurality of netlist outputs;

identifying one or more parity protected structures and

one or more gates, wherein protected parity structures
comprises a duplication protection; and

generating an assertion indicative of a parity validity;

applying, via the processor, a simulation and a formal

model based on the driver; and

testing, via the processor, an output of the simulation and

the formal model.

2. The computer-implemented method of claim 1 wherein
identifying the logic structure in the design netlist com-
prises:

statistically analyzing the design netlist;

extracting checking logic information from the design

netlist; and

extracting gating information from the design netlist.

3. The computer-implemented method of claim 2 wherein
extracting the gating information comprises identifying a
plurality of protected structures and a plurality of gating
structures.

4. The computer-implemented method of claim 1 wherein

traversing a netlist back from a plurality of netlist outputs;

identifying one or more parity protected structures and
one or more gates, wherein protected parity structures
comprise a onehot protection.

5. The computer-implemented method of claim 1 wherein
generating the simulation and the formal model based on the
driver further comprises:

generating a model for formal.

6. The computer-implemented method of claim 5, further
comprising generating an assertion for formal.

7. The computer-implemented method of claim 6,
wherein either the model for formal and the assertion for
simulation indicates a correctness status between two dif-
ferent sub-units of the chip.

8. A system for assuring a reliability of a chip comprising:

a processor configured to:

retrieve a design netlist;

identify a logic structure in the design netlist;
generate a driver based on the logic structure by:

verifying a parity;

traversing a netlist back from a plurality of netlist outputs;

identifying one or more parity protected structures and

one or more gates, wherein protected parity structures
comprises a duplication protection; and

generating an assertion indicative of a parity validity;

apply a simulation and a formal model based on the

driver; and

test an output of the simulation and the formal model.

US 9,483,591 B1

11

9. The system of claim 8 wherein the processor is further
configured to:

statistically analyze the design netlist;

extract checking logic information from the design netlist;
and

extract gating information from the design netlist; and

identify the logic structure in the design netlist based on
a statistical analysis of the design netlist, the logic
information, and the gating information.

10. The system of claim 9 wherein the processor is further
configured to extract gating information by identifying a
plurality of protected structures and a plurality of gating
structures.

11. The system of claim 8,

wherein protected parity structures comprise a onchot

protection.

12. The system of claim 8 wherein the processor is further
configured to:

generate a model for formal.

13. The system of claim 12, further comprising generating
an assertion for formal.

14. The system of claim 13, wherein either the model for
formal and the assertion for simulation indicates a correct-
ness status between two different sub-units of the chip.

15. A non-transitory computer-readable storage medium
storing instructions that, when executed by a computer,
cause the computer to perform a method for assuring a
reliability of a chip, the method comprising:

retrieving a design netlist of the chip with a processor;

identifying, via the processor, a logic structure in the
design netlist;

12

generating, via the processor, a driver based on the logic
structure wherein generating the driver based on the logic
structure comprises:
verifying a parity;
5 traversing a netlist back from a plurality of netlist outputs;
identifying one or more parity protected structures and
one or more gates, wherein protected parity structures
comprises a duplication protection; and

generating an assertion indicative of a parity validity;

applying, via the processor, a simulation and a formal

model based on the driver; and

testing, via the processor, an output of the simulation and

the formal model.

16. The non-transitory computer-readable storage
medium of claim 15, wherein identifying the logic structure
in the design netlist comprises:

statistically analyzing the design netlist;

extracting checking logic information from the design

netlist; and

extracting gating information from the design netlist.

17. The non-transitory computer-readable storage
medium of claim 16 wherein extracting the gating informa-
tion comprises identifying a plurality of protected structures
and a plurality of gating structures.

18. The non-transitory computer-readable
medium of claim 15,

wherein protected parity structures comprise onehot pro-

tection.

19. The non-transitory computer-readable storage
medium of claim 15, wherein generating the simulation and
the formal model based on the driver further comprises:

generating one of a model for formal and an assertion for

simulation, wherein either the model for formal and the
an assertion for simulation indicates a correctness sta-
tus between two different sub-units of the chip.

20. The non-transitory computer-readable storage
medium of claim 19, further comprising generating an
assertion for formal.

10

—_
w

storage
25

30

35

